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Most pathologists are part-time epidemiologists
as well. The two medical disciplines are more closely
allied than many realize. Epidemiologists study the
distribution and determinants of diseases in human
populations. In current medical practices, diseases
are often defined by histopathologic diagnoses or by
clinical pathologic test values. Thus, whenever a
pathologist shifts intellectually from the level of the
individual slide or specimen to thinking about a
group of diagnoses, an informal epidemiologic ques-
tion is being raised. For example, “How common is
this diagnosis?” is a question of prevalence or inci-
dence. “Why am I seeing so many cases of this type
of tumor?” is a question of time trends. “How would
my colleague interpret these slides compared with
me?” is a question of interpathologist agreement.
And, “What causes this disease I am seeing every
week?” is a question of etiology that can be ad-
dressed by pathologists working as epidemiologists,
or with them.

This chapter is meant to introduce the major
epidemiologic concepts of greatest use to patholo-
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gists who are considering a research project, or who
wish to think more formally at the population level
about their case material or diagnostic criteria. The
review is certainly not exhaustive; rather, it is meant
to be quite informal and readable and to encourage
the pathologist to pursue epidemiologic projects and
collaborations. The first section, accordingly, is or-
ganized around types of possible epidemiologic
studies that a pathologist might wish to pursue. The
next section outlines nonmathematically a few ba-
sics of statistical thinking that pathologists need to
know if they wish to do more formal epidemiologic
research. The third section discusses a few problem
issues that usually emerge when epidemiologists
and pathologists work together.

Applications of Epidemiology
to Pathology Studies

This section illustrates the types of epidemiologic
projects that a pathologist may undertake, either
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informally or formally. The examples are drawn
mainly from the author’s experience conducting eti-
ologic and screening studies of gynecologic neopla-
sia, especially cervical neoplasia.

Throughout this section, epidemiologic terms
will be introduced and simply defined. There is a
useful dictionary of epidemiology for readers inter-
ested in learning more terminology.” For a more
complete understanding of basic epidemiologic con-
cepts, the reader is referred to one of several intro-
ductory texts.2510

Prevalence, Incidence, and
Mortality Rates of Disease

One of the first questions that an expert or novice
epidemiologist is likely to ask about a disease under
study is “How common is it?” The pathologist at the
microscope is interested in how common various
conditions are, as one element of differential diag-
nosis (witness the maxims, “Rare diseases occur
rarely.” and “If you hear hoofbeats, think of a horse
not a zebra.”)

For the pathologist considering a research study,
the frequency of disease occurrence is crucial for
two reasons. On the practical level, very rare con-
ditions are difficult to study epidemiologically be-
cause the statistical principles underlying epidemi-
ology require moderately large numbers to deal with
chance, which is the unavoidable and defining char-
acteristic of observational studies in humans.

More importantly, the amount of disease in a

population is the starting point for epidemiologic

thought, leading to all the major epidemiologic com-
parisons, such as “How much disease occurs in pop-
ulation A compared to population B, and what does
the difference tell us? Why is the amount of disease
changing over time? What risk factors are associ-
ated with groups having the most disease?”
Because measuring the occurrence of disease is

so important to epidemiologists, they find it impor-

tant, like skiers discussing snow, to define terms

carefully using a resultant epidemiologic jargon (in

the good sense of the word). A few key terms related
to the frequency of disease occurrence are essential
and worth memorizing by anyone interested in
epidemiology.

The prevalence of a disease is the number of oc-
currences of the disease in a given population at a

given time, for example, “Twenty percent of the pa- -
tients seen in this clinic have at least reactive changes

on their Papanicolaou smears.” Often, prevalence is
discussed with reference to a single point in time, as
in a screening program, yielding a point prevalence:

“Two percent of the screening smears last month
showed changes suggestive of CIN.”

- The incidence of disease is the number of new
cases that develop in a given time period. Accord-

.ingly, incident disease refers to new disease whereas

prevalent disease refers to all the cases in the popu-
lation, whether new or chronic. The connection be-
tween prevalence and incidence is the duration of
the condition (Prevalence = Incidence X Duration).
Therefore, the prevalence of rabies in a given week
is close to the incidence because duration is short,
whereas the prevalence of a long-duration disease,
such as rheumatoid arthritis much exceeds the in-
cidence for any time period. A more subtle and rel-
evant example of how incidence and prevalence re-
late via duration is the following. In studies of young
women, we noted about 10 years ago that the point

" prevalence of human papillomavirus (HPV) infec-

tion was about the same as the yearly incidence,
suggesting a duration of infection of approximately
1 year. In follow-up studies, we have now confirmed
that HPV infections do last about a year.
Incidence is most often defined as a yearly rate,
as in “36,000 incidence cases of uterine corpus can-
cer were diagnosed in the United States in 2000.”
However, lifetime cumulative incidence is also an in-

" tuitively useful term, meaning the estimated risk of

occurrence of a disease over a woman'’s life: “About
1% of women in the United States will develop cer-
vical cancer in their lifetime.” For chronic diseases
such as endometriosis, genital herpes, or specific gy-
necologic cancers, incidence is usually thought of as
a one-time phenomenon; that is, second primaries
rarely occur. (In contrast to second primaries, re-
currences of the same disease imply that it is preva-

- lent, not incidence.) For acute, self-limited, or cur-
‘able conditions such as gonorrhea, incidence must

be defined over a narrow range of time appropriate
to the duration of the illness.

Rates of death from a disease are measured as
the mortality rate. The connection between inci-
dence and mortality is, of course, survival, measured
often by the case.fatality ratio.

 In summary, the epidemiologist is interested in
the prevalence, incidence, and mortality rates of a
disease as the fundamental basis of further study.
These term’s can be applied to any study population,
whether that population is a single gynecologic
practice or hospital, a city, a country, or the world.

National incidence and mortality data are most
often cited when discussing the scope of a medical
problem. Where can national data be obtained? In
the United States, pathologists are probably aware
that mortality rates from all causes are compiled
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and available from a variety of sources, most no-
tably and simply from the National Center for
Health Statistics (6525 Belcrest Road, Room 1064,
Hyattsville, MD 20782; 301-458-4636).

Mortality rates are usually the most reliable
gauge of disease occurrence for highly fatal diseases
when comparing different populations worldwide or
time periods. Of course, there are obvious uncer-
tainties and errors in ascribing causes of death, but
mortality rates are reasonably well recorded and
useful for many cancers. Mortality is not useful as
a measurement of disease occurrence in regions
where the diagnostic workups are lacking or the
case: fatality ratio has been altered sharply by im-
proved treatment.

In contrast, if a condition is not often fatal, mor-
tality rates may not be useful at all for disease sur-
veillance. It is often more difficult to obtain reliable
incidence data, and the researcher must rely on data
from voluntary registries, published surveys, or oc-
casionally government-mandated registries. For can-
cer, fortunately, the National Cancer Institute’s Sur-
veillance, Epidemiology, and End Results (SEER)
Program compiles incidence rates for a (nonrandom
but stable) 10% sample of the U.S. population. The
most accessible source of SEER cancer incidence and
survival data (as well as national cancer mortality
data) is CA-A Cancer Journal for Clinicians, published
annually by the American Cancer Society and mailed
free on request.* More detailed cancer data can be
obtained from other American Cancer Society publi-
cations, such as Cancer Facts and Figures, or from the
SEER program itself (National Cancer Institute,
Bethesda, MD 20892, or http://seer.cancer.gov). The
International Agency for Research on Cancer com-
piles international incidence and mortality rates de-
rived from cancer registries of varying quality.®18

Geographic Differences and
Time Trends in Disease Occurrence

Pathologists may wish to go beyond descriptions of
disease occurrence at a place and time to compare
rates between geographic areas or over time. The
usual hope is that the comparisons may yield clues
to etiology and pathogenesis. A cautious approach
is critical because of the omnipresent effects of
chance on observational data. How can one tell if
the amount of disease in one place or time is truly
different from the amount found earlier or else-
where? Disease rates fluctuate over time and place.
Many geographic differences and temporal trends
do not persist over time, appearing random (to the
limit of our understanding}!).

Hence, there is a need for statistics as one of the
disciplines underlying epidemiology. Distinguishing
chance differences from true differences requires
statistical thinking and an appreciation of the types
of differences that arise by chance. This point is im-
portant, because overinterpretation of chance dif-
ferences is one of the most common errors that
novice epidemiologists make when comparing dis-
ease rates from one place or time to another. For
example, many cancer “outbreaks” where several
neighbors get similar tumors turn out to be quite
explainable as chance clusterings of events, expected
for common malignancies such as breast cancer. A
good bit of advice might be to treat health statistics
like the monthly economic news: it takes a long-term
trend or a persistent difference to trust that some-
thing important is happening.

When comparing one place to another, or ana-
lyzing time trends, the cardinal rule is to make sure
that the comparison is valid. A checklist of common-
sense questions should be asked:

1. Are the rates being compared truly compa-
rable (incidence, prevalence, mortality)? In
particular, are the sources of data compara-
ble (for example, a mandatory registry can-
not be compared to a voluntary reporting
system because of differences in the com-
pleteness of reporting).

2. Are the diagnostic criteria the same in both
comparison groups? This particular problem
has plagued the interpretation of time trend
data regarding minor cervical cytologic ab-
normalities because increased recognition by
pathologists of subtle koilocytotic changes
cannot be easily distinguished from in-
creased incidence of koilocytotic atypia.

3. Are the two populations comparable in age
and other factors affecting risk of disease?
No one would think of comparing the preva-
lence of cervical epithelial neoplasia (CIN) in
a gynecologic referral practice to the preva-
lence in a screening clinic because, of course,
the prevalence would be higher in the refer-
ral clinic. Some researchers, however, make
the analogous mistake of comparing popu-
lations that differ with regard to age, so-
cioeconomic status, or other more subtle
characteristics related to the risk of disease
(called confounding variables in epidemio-
logic jargon). Most importantly, almost all
diseases vary in incidence and prevalence by
age, and thus almost all comparisons should
take age into account. The section on error
and bias (following) mentions simple meth-
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ods of adjustment for age and other con-
founding variables. The statistical bases of
making geographic and temporal compar-
isons are covered in the sections on descrip-
tive data and measures of risk.

Validating New (or Old) Histopathologic
Diagnostic Distinctions

The creation and refinement of pathologic classifi-
cations can be aided by epidemiologic corrobora-
tion. For example, the Bethesda System of cervical
cytology combines koilocytotic atypia and CIN 1 as
low-grade squamous intraepithelial lesion (LSIL).
This combination was supported by epidemiologic
data. The two diagnoses, which are not reliably dis-
tinguishable on morphologic grounds, share the
same epidemiologic profiles of younger average age
and varied human papillomavirus (HPV) types, as
compared to the older average age and restricted
HPV types found in higher-grade lesions. As another
example, a recent pathologic study of squamous vul-
var cancer, which proposed new pathologic sub-
types, was strengthened by a separate epidemiologic
analysis showing that the new subtypes had differ-
ent epidemiologic characteristics.® Pathologists and
epidemiologists can work iteratively to refine dis-
ease classifications, asking each other “Do cate-
gories X and Y look the same or different from your
point of view?”

Judging Intra- or
Interpathologist Agreement

Pathology agreement studies have been motivated
by the needs of both disciplines. Pathologists are ob-
viously concerned with the reliability of the diag-
noses they make. Epidemiologists are concerned
with uniform case definition in their studies. When
comparisons of intra- and interpathologist agree-
ment are performed, the epidemiologist can serve
the role of scientific organizer, ensuring independ-
ence of the reviews by masking the reviewers (also
called blinding) to each other’s diagnoses until after
the data are complete. It is the widespread opinion
of epidemiologists that unmasked comparisons, in
which reviewers have access to each other'’s diag-
noses, have limited scientific value. Like all human
beings, pathologists tend to agree much more in
public than in private, and masking provides a guar-
antee that a comparison rather than a consensus is
being achieved. In the area of cervical pathology, the
diagnosis of CIN by either cytology or histology has
proven much more variable among experts when
masked comparisons were performed than initially

expected. Surprisingly, the extensive histologic re-
views of specimens from loop electrosurgical exci-
sion procedures (LEEP) exhibit almost as much in-
terpathologist variability as cytology.!” Many
morphologic judgments that pathologists make re-
garding cancer precursor lesions are clearly diffi-
cult, regardless of tissue type and quantity.

Epidemiologic Studies of Disease Etiology

Epidemiologists attempt to find the determinants of
disease by statistically correlating the presence or
absence of possible exposures (often called risk fac-
tors) with the presence or absence of disease. Epi-
demiologic studies attempting to relate exposures
and disease are called analytic studies, as distin-
guished from descriptive studies that yield rates of
disease without directly addressing etiology.

A description of the many types of analytic stud-
ies is beyond the scope of this chapter. At the sim-
plest level, prospective or cohort studies start with
the measurement of an exposure in a group of study
participants who are followed over time. The inves-
tigators then compare incidence rates or absolute
risk of disease in the exposed versus the unexposed
groups. The ratio of the incidence rate in exposed
subjects divided by the incidence rate in the unex-
posed is called the incidence rate ratio. The reader
might correctly expect that there are as many types
of rate ratios as there are types of rates (e.g., preva-
lence rate ratio, lifetime cumulative risk ratio). Many
epidemiologists casually refer to the entire group
as the relative risk of exposed versus nonexposed
subjects and use the abbreviation RR as a general
shorthand.

Prospective studies are the most appealing type
of analytic study because they most directly deter-
mine how commonly disease occurs in exposed ver-
sus unexposed individuals. The relative risk, directly
measured, is an intuitively clear answer to the ques-
tion: “If a woman has this characteristic (the expo-
sure), how much more likely is she to develop the
disease, compared to a similar unexposed woman?”
The absolute risk translates as “How likely to get
disease is an exposed woman?” (see later: “Measures
of Risk”). The problem with prospective studies of
cancer is that they are expensive, usually take years
to organize and complete, and must be very large to
generate enough cases of cancer for reliable esti-
mates of risk, even for common tumors including
in situ neoplasia.

Other analytic study designs try, in general, to
estimate the relative risk estimates that might be f)b-
tained in the ideal prospective study, while saving
time and money. Analytic studies that start by col-
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lecting a series of cases (women diagnosed with a
given disease) and appropriate controls (women
without that disease who are measured for com-
parison) are called case-control studies. The expo-
sures of interest are ascertained for both groups and
the relative risk (RR) of disease among the exposed
versus the unexposed is estimated by calculating the
ratio of the odds of exposure in cases versus con-
trols (for more explanation, see the statistical sec-
tion on measures of risk).

The estimation of the prospective relative risk by
the case-control odds ratio (OR) is one of the most
important statistical concepts in epidemiology, and
one of the most subtle. For this statistical approxi-
mation to be valid, incident case and controls must
be chosen to be strictly comparable. The control
group must represent the group of women at risk of
developing disease at the time the incident case was
diagnosed, otherwise the estimation of the relative
risk can be grossly mistaken because of bias (a non-
random or systematic error in estimation of a sta-
tistic, to be distinguished from random error).

In practice, it is very difficult to define and re-
cruit an unbiased sample of the general population
of women that gave rise to the cases appearing in
one hospital or clinic. Thus, all kinds of compro-
mises of convenience and practicality must be made,
and it becomes difficult to avoid bias in choosing
controls. For example, smoking causes or worsens
so many kinds of illness that it is very difficult to
use hospitalized controls to estimate the relative risk
of a disease associated with smoking (such as many
cancers). The exposure to smoking in the hospital-

ized controls is elevated compared to the general at--

risk population; thus, the odds ratio obtained in a
naively conducted hospital-based study tends to pro-
vide too low an estimate of the relative risk.
Because case-control studies are so commonly
used as an analytic design, choosing proper controls
is one of the two most important aspects of epi-
demiology. The other is assuring proper measure-
ments of exposure and disease. The mark of a good
epidemiologist is a dedicated attention to control
selection and measurement error, whereas many
novices tend to focus more on the cases and data
analysis while relying on a convenience sample of
whichever controls are most easily available.
Besides prospective and case-control studies, an-
other common analytic study design is the cross-
sectional study, in which exposure and disease sta-
tus are ascertained concurrently for a study popu-
lation. An example would be a screening study of
HPV infection and abnormal cervical cytology, in
which all women attending a clinic are tested for vi-
ral DNA at the same time the cytologic smear is

taken. The analysis of a cross-sectional study is
somewhat similar to that of a case-control study, but
the researcher must be careful because the cases are
a combination of incident and prevalent disease.
The odds ratio that is computed in a cross-sectional
study is a good estimation of the prospective rela-
tive risk only if certain conditions are met, includ-
ing an assumption that the disease under study is
rare (an assumption not met for cervical cytologic
abnormalities in many clinics).

The pathologist collaborator should play a key
role in all analytic studies of diseases whose defini-
tions rely on nonroutine pathologic expertise. Mis-
classification of disease status can be very damag-
ing to a study because the result of misclassification
on correlative statistics, like the relative risk and
odds ratio, is, generally, to reduce the apparent
strength of the association between disease and ex-
posure. If the disease is defined poorly enough, no
epidemiologic risk factors may be found even if they
exist.!3 Moreover, it is often very difficult to mea-
sure the risk factors (exposures) without substantial
error, whether laboratory testing or interviews are
being used. The combination of multiple errors in
measuring both exposure and disease can literally
make a study worthless. For example, early studies
correlating HPV DNA detection and CIN revealed
only a moderate association, in that less than 50%
of cases were found to be HPV positive. Moreover,
HPV infection was not apparently associated with
sexual activity, an established strong risk factor for
CIN. These weak associations were a result of mis-
classification. Subsequent studies with better HPV
tests and expert review of pathology revealed that
virtually all cases of CIN contain HPV DNA and that
HPV is the sexually transmitted agent explaining the
association of sexual activity and risk of CIN.

As the result of the strong, damaging effects of
misclassification on epidemiologic studies, epidemi-
ologists pay careful attention to the pathologic clas-
sifications that define their study cases and controls
and often establish formal collaborations with re-
viewing pathologists as part of epidemiologic studies.

Follow-Up Studies of Patients with
the Same Pathologic Diagnosis

Clinicians, pathologists, and epidemiologists are all
interested in learning what happens to patients di-
agnosed with a given disease. For a possibly fatal
disease, survival rates are critical, whereas for other
chronic diseases progression rates are often esti-
mated. It is often of interest to divide the patients
into groups, to determine whether subtypes of dis-
ease follow different courses, or whether different
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treatments influence outcome. The randomized clin-
ical trial (see following) is a specialized version of
such a follow-up study, in which subjects are ran-
domly assigned to various treatment groups to max-
imize the comparability of the groups. The hope is
that the randomization will minimize differences in
both known and unknown confounding variables
that could bias the comparison.

Follow-up studies almost invariably involve the
concept of time to an event. In other words, it is im-
portant when incidence, progression, or death oc-
cur, not just if they occur. Let us discuss this issue
in the context of studies of disease outcome (as op-
posed to disease incidence). Clearly, all participants
in any follow-up study or clinical trial eventually die;
the question is when (and why). A good treatment
prolongs time to death whereas a bad type of dis-
ease shortens it. Because of the critical notion of
“time to event” in epidemiologic follow-up studies,
such studies depend heavily on actuarial methods,
such as survival curves and life-table analyses, when
comparing exposed to unexposed patients or treated
to untreated patients. The central statistical concept
in such studies is a kind of rate called a hazard,
which refers to the risk of an outcome occurring in
a unit of follow-up time. A hazard is computed as
the number of events (e.g., death, cure, or progres-
sion) divided by the amount of person-time of fol-
low-up. Person-time is computed individually for
each participant as the observation time between
her entry into the study and her exit. The total per-
son-time for a study group is the sum of all the in-
dividual observation periods. For example, 10,000
women followed for a year or 100 women followed
for 10 years both yield 1,000 person-years of follow-
up time. Twenty deaths arising during that follow-
up would yield an estimated hazard of 20 deaths per
1,000 person-years in both situations.

A hazard is a special kind of rate because it is
conceived of as the rate of an outcome (disease in-
cidence, progression, mortality, or whatever) at a sin-
gle moment in time, as the mathematical “limit” of
the rate as time “goes to zero.” Accordingly, the haz-
ard of disease can change from moment to moment
as conditions change. An HPV-infected woman lights
up a cigarette and her hazard for progression to in-
vasive cervical cancer probably increases. She quits
smoking the next day and her hazard decreases.

Moreover, the computation of the denominator
of hazards, person-time of follow-up, requires some
training and thought. For each successive time in-
terval during follow-up, the denominator of women
at risk for an event changes. For example, women
are lost to follow-up as they drop out of the study,
or they die for other reasons, or they experience the

event itself (because one can only progress for the
first time or die once). Thus, computing the proper
amount of person-time during which the events oc-
curred requires some knowledge of censoring, which
is the proper deletion of irrelevant follow-up time
during which the subject was not truly at risk of the
outcome.

It is useful to compute the hazard of conditions
like death that happen once and do not reverse. Life-
table methods are more confusing when a condition
can come and go. For example, say we want to study
“HPV infection” without defining specific types.
However, the term “HPV infection” is like “a cold.”
Multiple types can present a confusing picture of
clearance and “recurrence,” with ambiguous mean-
ing. Proper counting of events and censoring of
person-time are very difficult in this context, mak-
ing simpler analyses more appealing, such as the
computation of cumulative incidence rate ratios
(ever infected versus not infected over the course of
study).

Usually, researchers are not content to describe
the simple survival or progression curve of a disease
after diagnosis. They wish to determine which fac-
tors affect the hazard, that is, what the relative or
proportional hazard of death, etc., might be for
women in different groups defined by pathologic
differences or treatment types. The proportional
hazard is almost identical to the incident rate ratio
already discussed, but the denominator is person-
time of follow-up, not just time. Proportional haz-
ard analyses are too complex to be described here,
and pathologists performing follow-up studies
might consider consulting an epidemiologist or bio-
statistician early in the design phase of such proj-
ects. Data collection must be organized carefully to
permit a correct determination of person-time.

Randomized Clinical Trials

Randomized clinical trials are conceptually simple
prospective analyses, with eligible women divided
into treatment arms. Randomization serves to bal-
ance known and unknown biases in the arms. There
is a placebo or standard treatment arm, compared
to one or more new treatment arms. These trials are
very appealing as a court of judgment regarding best
medical practice when “equipoise” exists, that is, we
do not know which practice is best. Such trials are
highly influential. However, they are surprisingly
difficult and should not be undertaken as quickly as
observational studies. The maxim “Do no harm” is
applicable because the participants’ fate is influ-
enced by the randomization. Clinician judgment as
to the individual’s optimal treatment must explicitly
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be set aside. The stakes are always high when a trial
is under way. We want a result quickly and defini-
tively, but the two objectives are in conflict. The
time-honored rules used to ensure fairness can seem
bureaucratic and rigid. “Clinical trialists” are statis-
ticians, epidemiologists, and others who specialize
in randomization, data monitoring, intermediate
analyses (“data peeks” before the scheduled end of
follow-up), and stopping rules (in case the interme-
diate analyses reveal an especially good or bad out-
come). Pathologists contribute expert review of en-
try diagnoses and outcomes. Often, the burden of
pathology review is large, reproducibility is para-
mount, and the review process is highly controlled
by central administration. Of all collaborations with
epidemiologists, pathologists should be most wary
of clinical trials because of the inevitable attendant
requirements. Still, the rewards are vital.

Screening for Gynecologic Malignancies

Screening is inherently epidemiologic; thus, the
pathologist involved in screening programs (e.g.,

cervical cytologic screening or CA-125 testing) needs’

to understand the interrelated concepts of sensitiv-
ity, specificity, and predictive value. The basics are
outlined later in a statistical section on screening.
A common mistake in evaluating the results of a
screening trial is to ignore the clinical setting. The
sensitivity of a screening technique (percentage of
diseased women who test positive) and its specificity
(percentage of disease-free women who test nega-
tive) theoretically do not change when the test is
taken out of a high-risk hospital clinic to be applied
to the general population. But most clinicians are
more interested in the positive predictive value and
negative predictive value, two statistics that are
highly dependent on the clinical setting. The posi-
tive predictive value is the percentage of women test-
ing positive who truly have disease. The negative
predictive value is the reassurance that disease does
not exist given a negative test result. B
Here is an important practical point: Given the

same sensitivity and specificity (i.e., the same assay .

accuracy), positive predictive value decreases sharply

as the prevalence of the disease decreases. True pos--

itives can be swamped by false positives once the test
is applied to many normal women. Therefore, the
same screening test that looks promising because of
high sensitivity in a high-risk clinic will often perform
poorly in the general population, producing so many
false positives compared to the disease yield that the
costs outweigh the benefits. As a general rule, speci-
ficity is perhaps surprisingly important as a require-
ment for a screening test. A screening test such as a

tumor marker must be highly specific (negative in
virtually all nondiseased women, certainly more than
90%) to be cost-effective for general population
screening.

Basic Statistical Concepts

Hopefully, the preceding discussion has firmly es-
tablished the relevance of epidemiology to gyneco-
logic pathology research and even daily practice.
Epidemiologic work requires an understanding of
biostatistics. This section presents the bare basics
of what the author believes pathologists collaborat-
ing in epidemiologic research might wish to know
about biostatistical methods. Introductory biosta-
tistics texts are available and easy to read for the
pathologists wishing to work independently or for
those who want computational formulae for chi-
square or other commonly used tests.

Variability as a Fundamental
Principle of Pathology

Virtually all measurements that one could make
about a human population are variable. Height,
weight, fine points of anatomy, metabolic patterns,
serum levels of hormones, and nutrients are all com-
monly recognized to be variable. The same vari-
ability is seen by pathologists at the tissue and cel-
lular levels and by research pathologists at the
molecular biologic level (e.g., varying tissue levels
of DNA adducts given equivalent carcinogenic ex-
posures, genetic polymorphisms in human genes,
and varying molecular responses to infection with
viral DNA). Even the intricate, multistep molecular
pathways to cancer demonstrate substantial vari-
ability between individuals who develop the same
type of malignancy.

Variability in pathology is mainly described by
categorical or discrete data and statistics, as com-
pared with continuous data and statistics (the
province of the mean, median, and standard devia-
tion). Similar (but not identical) histologic and cy-
tologic appearances are categorized and named.
More attention is paid to the borderlines and over-
laps of the categories, rather than subtler differences
within the categories (unless splitting into finer cat-

- egories is being considered). Categorical data anal-

ysis relies on contingency tables, which are discussed

. in a following section. Contingency tables such as

the common 2 X 2 table are frequently counts of cat-
egorical data; for example, how many (not what per-
cent of) CIN 2 lesions demonstrated aneuploidy or
not, compared with how many CIN 3 lesions dem-

onstrated aneuploidy or not.
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The variability in categorical data such as pathol-
ogy categories shows up in diagnostic error, that is,
the misassignment of a patient to the wrong cate-
gory. In general, error cannot be avoided. To the epi-
demiologist, categorization of variable biologic con-
tinuua virtually dictates that there will be error. If
two categories blend into each other with regard to
a characteristic (even one as complex and general
as microscopic appearance), they cannot be per-
fectly separated based on that characteristic. Thus,
pathologists search for additional characteristics to
discriminate difficult-to-distinguish indeterminate
cases, such as immunocytochemistry, but these an-
cillary measurements also have error and overlap.
There is a field of statistics called discriminant anal-
ysis in which the goal is to determine how many
characteristics must be measured to maximize cor-
rect assignment to overlapping categories. This com-
plicated set of statistical methods underlies the de-
velopment of computer-assisted cytology screening.

Error Versus Bias

Error is inevitable, but epidemiologists hope that it
is mainly random, not systematically pushing the
data in one way or the other. Random error reduces
the reliability of repeated measurements, affecting
their precision, and reduces the perceived strength
of correlations, but the average measured value still
becomes increasingly true or accurate as the study
size increases. Systematic error, called bias, impacts
directly on the accuracy of the measurement; no
matter how large a study based on biased measure-
ments is, the answer will be wrong. Thus, epidemi-
ologists struggle to reduce random measurement er-
ror, but they have an even stronger dislike of biased
measurements. If the exact direction and magnitude
of a fixed bias were known, the data could be ad-
justed (like a scale that always reads three pounds
too heavy), but adjustments for bias are not usually
possible.

Epidemiologists combat error and bias in a few
standard ways. To quantify and reduce random er-
ror, reliability is measured by repeating data col-
lection, whether that involves reasking a question,
rerunning an assay, or submitting a pathology slide
for rereview.

For continuous variables, statistics of reliability
begin with the variance. It is the sum of the squared
deviations of measurements from their arithmetic
average or mean, divided by the number of data
points minus one. The standard deviation is the
square root of the variance, and is commonly used
to indicate the “spread” of a group of numbers. The
standard deviation of a measurement can be com-

puted for individual members of the overall study
population or for repeated samplings of a study sta-
tistic such as the mean (in which case it is called
the standard error of the mean). Standard errors are
important in making confidence intervals around the
mean, when we compare different populations to
see whether they are statistically significantly dif-
ferent regarding the characteristic under study.

When epidemiologists assess laboratory assays,
they often consider the coefficient of variation (CV),
which is the ratio of the standard deviation to the
mean. Low CVs (under 10% is excellent) indicate
high assay reproducibility, although they do not en-
sure accuracy. Remember that a reproducible assay
can still be biased.

For categorical variables such as pathology in-
terpretations, statistics of reliability include the sim-
ple percentage of agreement and more complicated
statistics mentioned below in the section on mea-
sures of interpathologist agreement. Epidemiolo-
gists would like to compare the pathology diagnoses
to a reference standard of truth, but such reference
standards virtually never exist. Certainly, there is no
source of absolute truth in pathology, only advanc-
ing degrees of expertise correlated with decreasing
amounts of diagnostic error. Therefore, to reduce
bias in pathology, researchers are limited to the
comparison of different experts. To the extent that
truly independent experts agree (without consider-
ation of each other’s opinion), the possibility that
either one is biased is reduced. To reduce the pos-
sibility of bias, epidemiologists try to ensure that all
study measurements are made independent of each
other so that knowledge of one variable cannot bias
a decision about another. The difficulties of mask-
ing are discussed in a later section.

Descriptive Data

The terms used most often to describe and summa-
rize descriptive data, such as prevalence and inci-
dence, were defined earlier in the section on geo-
graphic differences and time trends and are not
repeated. A few additional statistical concepts criti-
cal to the interpretation of descriptive data should
be mentioned.

First, there is an important choice of scale in the
plotting of descriptive data. The scale of the y or ver-
tical axis greatly affects the appearance of the data
and must always be noted when examining plotted
data. A log scale flattens curves and reduces the ap-
parent strength of trends and differences whereas
an arithmetic scale does the opposite. On a log scale,
an increasing, straightline trend implies an expo-
nential, not linear rate of increase.
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A common error in inference when interpreting
descriptive data is the ecologic fallacy, the attribu-
tion of causality to an association seen only in de-
scriptive data. For example, the international risk of
colon cancer (mortality rates for each country plot-
ted on a graph) correlates with the average dietary
intake of those countries for fat, meat, and sugar
and with the average amount of sunlight (the ma-
jor determinant of vitamin D levels). To assume au-
tomatically that all four variables are true risk fac-
tors for colon cancer at the level of the individual
would be an example of the ecologic fallacy, con-
fusing descriptive data for analytic (individual level)
data.

In the interpretation of time trend data, the pos-
sibility of a cohort effect must be kept in mind. A co-
hort effect, familiar by analogy to anyone who stud-
ies the sociology of baby-boomers, is the variation
in disease occurrence that occurs in a population
over time, as successive birth cohorts (persons of
the same age) experience the unique environment
that typifies their life course. For example, based on
cross-sectional prevalence data compiled in Port-
land, Oregon, in 1991, the prevalence rates of koilo-
cytotic atypia of the cervix decreases sharply with
increasing age from a peak at about 20-25 years.
This age trend might represent a biologic phenom-
enon, the result of immunity, with many women be-
coming infected with HPV at the time of initiation
of sexual intercourse, then becoming increasingly
immune and having fewer new sexual partners as
they age. Or, the age trend could also reflect a co-
hort effect, with changing sexual practices and in-
creasing prevalence of HPV infection over the past
decades placing younger women today at higher risk
for koilocytotic changes compared with their older
sisters and mothers.

To distinguish cohort effects from simple age
trends requires a cohort analysis, a type of descrip-
tive graphing in which the age-specific prevalence
rates are graphed separately for each birth cohort.
These analyses are usually difficult enough in in-
terpretation to merit a statistical consultation.

The Basic Contingency Table

The pathology slide of epidemiology is the contin-
gency table, the basic form of which is the 2 X 2
table (Table 27.1). Most important epidemiologic
findings, relating an exposure to risk of a disease,
have been derived and can be expressed in this sim-
ple form. Extension of the table to more rows or
columns does not change the concepts, only the sta-
tistical complexity.

The most common statistics computed from a
contingency table are simple proportions or per-
centages (proportions of 100%), which can then be
compared: “Ninety percent of the group with dis-
ease were smokers [(a/a + ¢) = 0.90] compared with
20% of the nondiseased [(b/b + d) = 0.20]. These
proportions could be compared statistically using
the well-known #-test or another test of the differ-
ence between independent proportions. More often,
the chi-square statistic is computed, which gives
equivalent interpretations but has a slightly differ-
ent intent.

The chi-square test is meant to determine
whether the disease categories and the exposure cat-
egories are associated or independent; that is, does
being exposed affect the probability of having dis-
ease? Chi-square values are derived by comparing
the expected counts of a, b, ¢, and d, to the values
that would be expected if disease and exposure were
totally independent. For example, the expected value
of a is the cross product of (a + b) X (a + ¢) divided
by #. The divergence of observed from expected val-
ues for all the cells of the table (a, b, ¢, d) are summed
to derive the chi-square statistic. The larger the sta-
tistic, summarizing how much observed counts dif-
fer from expected, the more likely disease and ex-
posure are associated by more than chance.

The chi-square statistic obtained is compared to
the tabled values of the chi-square distribution to
yield a p-value, the probability of observing such a
chi-square value if disease and exposure are not re-
lated. In other words, this is the probability of con-
cluding that an association exists in error. To falsely

Table 27.1. The basic contingency table
Disease ~ No disease  Total
Exposed ortest a a+b
positive
Unexposed or c c+d

test negative

Total a+c

b+d

at+b+c+d=n
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accept an association, when the null assumption
would be correct, is considered a type 1 error. This
name was chosen perhaps because it is generally
considered a more important scientific error than
failing to detect a true association (a type 2 error).
If the p-value is less than an appropriate cutpoint,
such as 0.05 or 0.01, then convention dictates that
chance is unlikely to explain the degree of associa-
tion seen in the table and the association is consid-
ered statistically significant.

Thanks to many published cautions, most clini-
cians and researchers know that a strict dependence
on p-values is incorrect because the magnitude of
the p-value is dependent on the size of the study.
Smaller studies require stronger associations to
achieve the same level of statistical significance;
thus a p-value of 0.06 in a small study by no
means rules out a true exposure-disease association
whereas a highly statistically significant difference
from a huge study may be so small as to be clini-
cally irrelevant.

Contingency tables larger than 2 X 2 should be
analyzed in a methodical and hierarchical fashion,
not restricting the analysis to the most “significant
looking” internal comparisons. First, the evidence
for association in the full table should be assessed
and, if there is none, then the analysis should stop.
A common mistake some novices make is to look at
a large contingency table, choose the most interest-
ing difference seen, then test the significance of that
extracted comparison. Given a large enough con-
tingency table, some subtables will yield statistically
significant results by chance alone. Permitting a pre-
screening of the data before applying a statistical
test to the most divergent data points is wrong. If
one wishes to define the likely source of the associ-
ation when the overall contingency table indicates
statistical significance, the proper approach is to an-
alyze smaller subtables in a complete and hierar-
chical manner. A formal description of the proper
approach to contingency table analyses can be
found in standard biostatistics texts.

When the number of study subjects is very small,
such that the expected count in any cell is less than
about five, then chi-square analyses are unreliable
and should be replaced by a test called Fisher’s ex-
act test. Of course, if the study is too small, no re-
sult will be statistically significant.

One other key point about contingency tables is
that the two measurements (disease status and ex-
posure, for example) must be assumed to be inde-
pendent as one embarks on statistical testing. Al-
though a significant chi-square statistic indicates
that the measurements are not independent, the ini-
tial or null hypothesis of independence is what the

test is designed to reject. Thus, standard chi-square
analyses should not be performed to test tables
where the measurements are explicitly correlated,
as in interpathologist agreement studies (see later)
or comparisons of the efficacy of two cell collection
techniques used in the same group of patients. For
these paired-sample comparisons, the McNemar’s test
is easy to use. The test ignores the points of agree-
ment of the two measurements and tests the statis-
tical significance of the amount of divergence.

It would also be wrong to include more than one
measurement per subject in a standard contingency
table. Measurements from a given person tend to be
“auto-correlated,” that is, more alike than random
measurements. A difficult and evolving field of epi-
demiology explicitly considers multiple measure-
ments from subjects. For example, in a prospective
cohort study, it may be very interesting to study the
patterns of mildly abnormal cytologic interpreta-
tions over time that indicate a risk of subsequent se-
vere neoplasia. The level of study remains the
woman, not the slide, and a simple contingency
table cannot be used as it would lump together all
the interpretations naively.

Measures of Risk (Absolute,
Relative, and Attributable Risks)

The chi-square provides limited information regard-
ing the strength of an association (yes/no). There-
fore, epidemiologists often prefer instead to compute
the more informative statistic, the relative risk (or
odds ratio estimate of the relative risk). These key
terms were defined in the section on epidemiologic
studies of disease etiology. In this section, the rela-
tion of the terms to the contingency table are ex-
plained, with a brief discussion of ancillary topics
such as statistical adjustment of confounding vari-
ables, interaction, and confidence intervals.
Suppose a prospective study started by defining
an exposed group and an unexposed group of
women, then followed the two groups for disease
occurrence. The absolute risk of disease following
exposure can be represented as an incidence rate
al(a + b). The time period for this incidence rate is
implicitly the duration of follow-up. The absolute
risk of disease in the unexposed group, analogously,
would be the incidence rate c/(c + d). The ratio of
these absolute risks would be the relative risk
(specifically, the incidence rate ratio) in exposed ver-
sus nonexposed women, a/(a + b) divided by c/(c +
d). A relative risk of approximately 1.0 implies the
exposure is not related to risk of the disease. A .rel-
ative risk greater than 1.0 implies an increased risk.
For example, a relative risk of 2.0 means that the |
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risk of disease in exposed women is twice that of
unexposed women. In contrast, a relative risk be-
tween 0.0 and 1.0 indicates a protective association
(a relative risk of 0.5 implies a halving of risk asso-
ciated with the exposure). Prospective studies per-

mit the computational directness and intuitive qual-

ity of the relative risk calculation, and the ability to
decompose the relative risk into the absolute risks
among the exposed and unexposed groups.

In contrast, absolute risks cannot usually be cal-
culated in case-control studies, because the true
numbers of exposed women (a + b) and unexposed
women (¢ + d) are not known. In fact, in 2 X 2 ta-
bles from case-control studies the values a + b and
¢ +d are meaningless and should never be com-
puted. The numbers of cases (a + ¢) and controls
(b + d) are chosen first, and not in proportion to the
true ratio of cases to controls in the population.
Cases are almost always sampled in excess; in fact,
oversampling cases to overcome the limitation of
rarity is the major reason to perform a case-control
analysis.

As mentioned earlier, although case-control data
do not permit direct calculation of the relative risk,
the odds ratio provides a valid estimate of it if the
following assumptions are met. The cases and con-
trols must represent an unbiased sample of all
women with and without disease in the population.
The disease in question must be rare if prevalent
cases are studied. If the cases are all incident, the
rare disease assumption is not as important, unless
the disease is so common that a nonnegligible per-
centage of the population is developing it at any
given time. :

To understand these points more intuitively,
again consider a prospective study. The odds of dis-
ease in exposed women is a/b, very close to the risk
of disease a/(a + b) if a, the occurrence of disease

among the exposed, is very infrequent. Similarly, the

odds of disease in nonexposed women is c/d, close
to the risk of the disease if uncommon in the non-
exposed women, c/(c + d). With a little algebra, it is

easy to see that the relative odds or odds ratio for a _'

rare disease (a/b divided by c/d, often computed as

the cross-product ad/bc) is quite close to the relative -

risk.

The important point is that the cross-product
ad/bc can be computed from a case-control study
without knowing the total number of exposed and
unexposed women. So long as the odds a/c and b/d
are unbiased with regard to the entire population,
then a/c divided by b/d equals ad/bc equals the
prospective odds ratio of a/b divided by c/d. The key
is to select an unbiased sample of cases and con-
trols. Because epidemiologists usually try to recruit

all cases occurring in a population, bias among
cases is not usually an issue unless participation
rates are poor. The place where bias is a major con-
cern is among the controls. Epidemiologists spend
most of their intellectual energy attempting to en-
sure that the ratio b/d in controls (also thought of
as the percentage of controls exposed to the risk fac-
tor) is unbiased compared to the same ratio in the
whole population that gave rise to the cases. With-
out the elimination of bias, the odds ratio does not
estimate the relative risk, and the case-control de-
sign will yield a false result.

Confounding is the type of bias that concerns epi-
demiologists the most, particularly when they are
conducting case-control studies or nonrandomized
prospective studies. Confounding variables are fac-
tors that influence both the risk of disease and the
likelihood of exposure to a risk factor under study.
The relationship between exposures, confounding

‘variables, and disease outcome is illustrated in

Fig. 27.1.

When assessing whether an exposure, such as
genital herpes infection causes cervical cancer, the
researcher must consider and adjust for the con-
founding influence of HPV infection, the sexually
transmitted agent that is the central cause of cervi-
cal cancer. Women who have more sexual partners
are more likely to be both herpes type 2 and HPV
infected (i.e., the confounding variable HPV is
linked to the likelihood of the study exposure, her-

* pes). The apparent influence of herpes type 2 on risk

of cervical cancer is reduced by statistically adjust-
ing for HPV infection status. In summary of this im-
portant point, epidemiologic analyses must adjust
statistically for the influence of confounding factors

' to generate unbiased risk estimates. Note that con-

founding factors are true risk factors for disease, de-
spite the name that suggests confusion; it is the

- exposure—disease association that is under question.

Adjustment for confounding is commonly un-
dertaken by one of three methods: exclusion, strati-
fication, or regression modeling. Exclusion is exem-

Confounding variable

(HPV infection)

Disease

Exposure
(Herpes type 2 infection) (Cervical cancer)

Fig. 27.1. Confounding
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plified in the foregoing example by restricting the
analysis to women known to be infected with HPV.
Using stratification, rather than excluding any sub-
jects, the association of sexual behavior with cervi-
cal cancer could be examined separately in each of
the two strata (HPV—/HPV+), providing two un-
confounded estimates akin to those derived by ex-
clusion. The risk estimates could then be pooled to
obtain a global estimate for the risk of genital
herpes adjusted for HPV. This kind of stratified anal-
ysis is commonly performed using a group of pro-
cedures called a Mantel-Haenszel analysis in recog-
nition of its developers.

A more conceptually difficult approach that is
widely used is logistic regression analysis, a multi-
variable regression technique available in the major
statistical software packages such as SAS, STATA,
and BMDP. Logistic regression is especially well
suited to calculation of the odds ratio as an estimate
of the relative risk in case-control studies. This tech-
nique permits the simultaneous estimation of the
relative risks for multiple risk factors, adjusted for
each other’s confounding influences. A discussion of
this technique, and its uses and misuses, is beyond
the scope of this chapter. The commercially avail-
able statistical packages offer multivariable regres-
sion packages in a seductively simple format that
might inspire some novice epidemiologists to per-
form complicated analyses. However, to master the
art of multivariable regression analysis takes statis-
tical training and apprenticeship. Moreover, the re-
sults cannot be “checked” easily. It is wise to both
avoid and distrust complicated analyses, especially
because the bulk of what can be learned from most
data sets can be expressed using simple tables and
intuitively approachable statistics. In short, all mod-
eling should be checked against simple tables for
commonsense agreement.

Adjustment for confounding is often not per-
fectly achieved, particularly when the confounding
variable cannot be measured well or when variables
under study are highly correlated. In fact, it is some-
times virtually impossible using statistical methods
to adjust for the confounding influences of corre-
lated variables. For example, the most conceptually
difficult areas of chronic disease epidemiology re-
late to time. In all data analyses involving time, the
correlated effects of age at first exposure, duration
of exposure, and latency (time since first exposure)
are among the most difficult to figure out.

Sometimes the risk of an exposure varies by the
level of another exposure. For example, the risk of
esophageal cancer associated with smoking is much
higher among alcohol drinkers than among non-

drinkers. This effect modification is often called in-
teraction. Extreme positive effect modification is
sometimes called synergy, but that term is inexact
and probably is worth avoiding. Effect modification
is different from confounding, in that no global ad-
justment to arrive at a single correct risk estimate
for the exposure is possible. The risks truly vary by
levels of the effect modifier. The proper approach is
to present the risk estimates for the exposure sepa-
rately for each level.

It is common to place confidence intervals around
relative risk estimates to indicate the likely range of
the true risk that we are trying to estimate. Confi-
dence intervals take into account only random er-
ror, not bias, and are conceptually somewhat simi-
lar to p-values though more informative. Thus, a
95% confidence interval and a p-value of 0.05 are
both commonly chosen as standard and have anal-
ogous interpretations. For example, if the relative
risk of an exposure for a disease is 1.8 with a 95%
confidence interval of 1.1 to 3.0, this implies that
given random error, the true relative risk has a 95%
chance of falling within that range. If the confidence
interval for a relative risk excludes 1.0, the result is
conventionally considered statistically significant. A
relative risk with confidence intervals including 1.0
indicates no statistically significant association be-
tween exposure and disease. As with p-values, con-
fidence intervals should be used as a guide but not
followed slavishly in interpreting data.

Most analytic epidemiologic research centers on
estimation of relative risks. Another very useful con-
cept, especially for public health applications of epi-
demiologic results, is the attributable risk, also
known as the attributable proportion or etiologic frac-
tion. These terms subsume several computational
forms and subtle differences in meaning, but the
general meaning is clear: how much of the disease
(from 0 to 100%) is due to the exposure and would
theoretically disappear if the exposure were elimi-
nated. One useful computational formula for the at-
tributable risk, using the notation in Table 27.1, is
Attributable risk = [(a/a + c) X (1 = 1/RR)] X 100%.
In words, the fraction of disease attributable to the
risk factor is equal to the percentage of cases of the
disease who are exposed, adjusted for the strength
of the estimated relative risk. Although the formula
may appear a bit complicated, it is very easy to use.
The adjustment part of the formula (1 — 1/RR), goes
to 0 as the relative risk goes to 1.0 and goes to 1 as
the relative risk goes to infinity. Thus, even if all
cases are exposed, the attributable risk will be 0%
if all controls are also exposed because the RR is 1.0
and the adjustment term is 0.




27. Epidemiology

1313

Causal Intermediates and
Surrogate Endpoints

Increasingly, many pathology and epidemiology
studies of gynecologic neoplasia do not include in-
vasive tumors. There is a keen interest in the vali-
dation of biomarkers and intermediate/surrogate
endpoints for screening, diagnosis, and etiologic re-
search. Cancers arise as multistep processes. An ex-
posure can become a biologically effective internal
dose, resultant genetic alteration can lead to a sub-
tle lesion, and the precursor can progress to cancer.
Each step might be reversible and influenced by the
genetic susceptibility of the individual. The earliest
intermediate endpoints are often common and re-
versible, such as HPV infection. Later steps are less
common and more fixed, such as progression of a
simple HPV infection to CIN 3. Although molecular
biologists may view oncogenesis as a series of “mo-
lecular hits,” epidemiologists may discuss “condi-
tional probabilities.” For example, conditional on a
woman being infected with an oncogenic type of
HPV, what is the probability of progression to CIN
3? Conditional on having CIN 3, what is the proba-
bility of invasion? If the CIN 3 lasts for 5 years with-
out regression, how does that affect the probability
of invasion?, and so on. Oncogenesis occurs mech-
anistically but, lacking all the details, epidemiology
presumes that events will happen by useful mea-
surements of “chance.”

The importance of a biomarker or intermediate
endpoint can be evaluated using the relative risk of
cancer when positive compared to when negative. A
high relative risk implies importance. A surrogate
endpoint is a more stringent term. Many studies ex-
amining the associations between biomarkers are
not clinically relevant because no association with
attributable risk of disease is directly made. If a bio-
marker is a valid surrogate endpoint, then reducing
its occurrence should proportionately reduce the oc-
currence of the cancer itself. CIN 3 is a good sur-
rogate endpoint for invasive cervical cancer.

The statistical evaluation of possible intermedi-
ate endpoints is linked to the analysis of confound-
ing algebraically, but there are important differ-
ences of interpretation. When a biomarker or
preinvasive lesion is proposed as an intermediate
endpoint for a cancer, it should share the general
risk factor profile of that cancer. In fact, its consid-
eration by statistical adjustment should “explain”
the association of known epidemiologic risk factors
for that cancer. If not, the validity of the interme-
diate endpoint as a surrogate for the cancer is in
question. As an example, the risk of ovarian cysts

detected by transvaginal ultrasound is not reduced
by multiparity and oral contraceptive use. These are
two very powerful protective factors in the etiology
of ovarian cancer, casting doubt on the etiologic rel-
evance of most of the cysts found by ultrasound.?
On the other hand, HPV infection almost completely
explains the strong association of sexual behavior
and risk of cervical cancer, as befits a central causal
intermediate.!!

Measures of Interpathologist Agreement

Simply put, there is no universally accepted statis-
tical measure of interrater agreement. The problem
is adjustment for the influence of chance agreement,
which varies with the numbers of categories and the
composition of the study population. All currently
available statistical methods have limitations and,
therefore, it is best when possible to present the ac-
tual data to the reader, in addition to any percent-
age or statistic.

Consider a study of interpathologist agreement
for the categories of the Bethesda System of cervi-
cal cytology. A group of 100 smears was given to
pairs of pathologists, who were asked to rate them
as normal or benign reactive changes, atypical squa-
mous cells of undetermined significance (ASCUS),
LSIL, or HSIL (high-grade squamous intraepithelial
lesion).!#15 The trouble with simply calculating per-
cent agreement is not only that some agreement is
expected by chance. The results are strongly depen-
dent on how the smears are chosen. If mainly nor-
mal smears were submitted, the percentage of agree-
ment would be high. If a wide range of changes were
equally represented, then agreement would un-
doubtedly decrease. In general, the most informa-
tion is obtained by choosing a wide range of smears,
oversampling the rarer grades to achieve a balanced
study group.

The most widely used, more sophisticated sta-
tistic of agreement of use to pathologists is the kappa
statistic. The kappa statistic computes the propor-
tion of agreement in excess of the expected chance
agreement. Kappa values can range from 1.0 (per-
fect agreement) to less than 0.0 (zero implies only
chance agreement). The statistic has some limita-
tions.8 Only tables of identical size can be compared,
and the statistic is slightly dependent on the preva-
lence of disease. Also, the interpretation of kappa
values is not absolutely clear cut, in that researchers
disagree as to what defines good agreement. In gen-
eral, values greater than 0.75 represent excellent
agreement beyond chance, 0.40 to 0.75 is fair to
good, and less than 0.40 indicates poor agreement
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beyond chance.! An asymmetry chi-square, analo-
gous to a multicategory McNemar's test, is often cal-
culated with the kappa statistic. The purpose is to
test whether one rater is yielding systematically

more severe interpretations than the other, or -

whether disagreements are randomly distributed.
Many pathologists are willing to admit how dif-
ficult it is to distinguish grades of intraepithelial
neoplasia as assessed by cytology. Objective molec-
ular measurements such as HPV DNA testing are
useful in clarification of equivocal cytology.!4 How-
ever, as mentioned earlier, much less is said about
the irreproducibility of histologic diagnoses or in-
traepithelial neoplasia. Interpathologist agreement
based on cytology or histology tends to be moder-
ate, not excellent,’¢ which is a sobering thought
given the importance of the interpretations in guid-
ing patient management. To the knowledgeable epi-
demiologist, misclassification of pathology is in-

evitable and not a matter of fault in most instances.

Screening Terms

Screening is a special area of epidemiology distinct
from descriptive or analytic studies. It is rare to find
a useful screening test. Finding a strong risk factor
for a disease does not imply that we should screen
for that risk factor, because the factor is often too
common in the general population to permit its use
as a trigger for clinical action.

Screening terms have very exact meanings,
which may vary from other common uses of the
same terms. In Table 27.1, the women in cell “a”
have true-positive screening tests, in that they have
the disease and tested positive. The women in cell
“c” have false-negative results, because they have the
disease but tested negative. The sensitivity of a test,
also called the true-positive rate, is the percentage
of diseased women who test positive [a/(a + ¢) in
Fig. 27.1]. The screening sensitivity must be clearly
distinguished from the analytic sensitivity of a lab-
oratory assay, which has a different meaning. Typ-
ically, the more analytic sensitivity the better. How-
ever, increasing screening sensitivity can lead to
decreasing specificity, as indicated in the following
section on ROC curves.

The true-negative results are in cell “d”; the false-

positive results are in cell “b”. The specificity, also

called the true negative rate, is the percentage of
women without the disease who test negative [d/(b +
d)]. The concept of specificity is more important in
screening than most realize. Because the over-
whelming majority of women in a population do not
have the disease under study, as the specificity per-

centage falls even slightly, the absolute numbers of

~false-positive screening tests rise dramatically in

comparison to the number of true positives.

Therefore, decreased specificity leads to low pos-
itive predictive value, the percentage of women with
a positive test who truly have the disease [a/(a + b)].
Positive predictive value is, for many diseases, the
major screening statistic of interest. Clinicians ask:
If a woman tests positive, what is the likelihood that
she will have disease confirmed on referral to the
next clinical step (e.g., colposcopically directed bi-
opsy, laparoscopy, or more major surgery). Low pos-
itive predictive value leads to overreferral and
overtreatment.

For grave diseases, where overtreatment of nor-
mal women is less of a concern than not missing
any cases, the negative predictive value is a very im-
portant concept of reassurance. The negative pre-
dictive value is the percentage of women who test
negative who are truly disease free [d/(c + d)]. A cli-
nician may ask, accordingly, “If the test is negative,
what is the percentage assurance that the disease is
not present and that I can safely stop the diagnos-
tic workup?” The sensitivity of the test is usually the
key determinant of negative predictive value.

When screening is mentioned, there is always an
implicit notion of a reference standard or gold stan-
dard of disease. The performance of screening tests
is described statistically in relation to this reference
standard, and if it is flawed, then the screening sta-
tistics will be flawed. For example, colposcopically di-
rected biopsy with pathologic diagnosis is often taken
as the reference standard of cervical intraepithelial
neoplasia (CIN), but the colposcopic biopsy may be
misdirected or the histopathologic diagnosis may be
in error. Thus, the true performance of screening tests
such as cytology, cervicography, or HPV testing may
be misinterpreted when compared with the results of
colposcopically directed biopsies.!?

Screening tests may detect prevalent disease or
predict the future diagnosis of disease, and the two
time frames may be confused. If some type of HPV
test could truly predict incipient cervical neoplasia,
even when biopsies were still negative, it would be
misleading to compare the HPV screening result
only to prevalent (same-day) disease defined by
biopsies.

Another mistake is the following: Researchers
who wish to compare the sensitivity of two screen-
ing tests double-test a research population, referring
for a definitive diagnostic procedure those women
who are positive for either screening test. If they
then compute and report the “sensitivity” of each
test, an error of circular reasoning has been made.
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Because both screening tests could have missed dis-
ease (double false-negatives), the true sensitivity of
either test cannot be known without referring all
women in the study population for the definitive
workup. Sometimes, in large studies, it suffices to
refer a random sample of the women who screen
negative on both tests, as a way of correcting (or of
verifying, to think optimistically) the estimates of
sensitivity.

The point of this discussion is that, when screen-
ing terms such as sensitivity or specificity are men-
tioned, then the reference standard must be explic-
itly stated and, if necessary, questioned.

The Receiver-Operating
Characteristic (ROC) Curve

Some of the current controversy regarding the
proper clinical management of inconclusive cervi-
cal cytologic smears centers on the competing needs
for good negative predictive value (assurance that
we are not missing any high-grade disease) and good
positive predictive value (desire to not overtreat).
This problem highlights an inescapable feature of
screening (or more fundamentally of trying to cate-
gorize overlapping distributions): increased sensi-
tivity virtually always leads to decreased specificity
and, as a corollary, increasingly reassuring negative
predictive value can only be obtained at the price of
decreased positive predictive value.

There is a formal method for choosing the proper
screening cutpoint (e.g., the viral load threshold of
a DNA-based assay meriting colposcopic referral to
detect CIN 2-3 or cancer) to achieve an optimal
compromise between sensitivity and specificity. The
technique is called the receiver-operating character-
istic (ROC), because the approach was developed to
test how well an electronic receiver could distin-
guish signals from electrical noise. The concepts are
useful and well explained in a few key articles that
are recommended to anyone wishing to evaluate a
screening test.12:19

In brief, most test measurements range from
zero to some high value. It is conceivable to set a
series of cutpoints that define a positive screening
test result demanding further attention. Lower cut-
points may detect more cases of disease but refer
more women. In a ROC curve, sensitivity for detec-
tion of the target disease is plotted against 100%
specificity. The expression 100% minus specificity
is very close to percent referred. A very good screen-
ing test will have very high sensitivity and speci-
ficity. In other words, it will detect women with dis-
ease but refer few extra women. The quality of

screening or diagnostic tests is easy to compare us-
ing ROC curves.

Problem Areas

The major goal of including an introduction to epi-
demiology in a textbook on gynecologic pathology
was to encourage pathologists to do epidemiologic
studies and to work with epidemiologists. Accord-
ingly, it may be worth alerting the pathologist to re-
current problem areas that exist at the juncture of
the two disciplines. This section quite informally
catalogs a few practical problems that appear to
arise most commonly.

Dividing a Spectrum of Disease
into Categories

Unfortunately, some epidemiologists may seek out
pathologists to perform a service function of “mak-
ing sure the cases are right,” without understanding
much about pathology (just as pathologists might
seek out statisticians to do a rote data analysis or to
figure “How many cases are needed for statistical
significance?”). Providing rote pathology review
may prove a difficult collaboration, because epi-
demiologists are prompted by their statistical meth-
ods to seek overly simplistic and discrete catego-
rization of disease outcomes. Because the statistical
methods for considering a spectrum of disease are
difficult to perform and understand, epidemiolo-
gists tend to simplify disease measurements into a
few (ideally two) reliably distinguished categories,
such as “invasive cervical cancer” versus “normal.”
But, as the example of cervical neoplasia demon-
strates, diseases may exist as a spectrum of changes
that are impossible to divide perfectly into a few cat-
egories.

When an epidemiologist asks a pathologist to
state whether a slide shows disease (i.e., defines a
case) or not (i.e., rejects the case), an uncertain or
heavily qualified diagnosis is difficult to force into
the study dichotomy. Often, the epidemiologist must
subsequently exclude the uncertain diagnoses from
the analyses. It is possible to perform a “malicious
analysis” in which the uncertain cases are added to
the analysis as cases, then reanalyzed as controls, to
see whether the uncertainty in pathologic definition
affects the comparisons being made. However, too
large a proportion of uncertain diagnoses can make
an analytic study unreliable.

The collaborating epidemiologist must be willing
to understand diagnostic error as a fact of nature
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and not a failing of pathologists. The pathologist
must be willing to sacrifice absolute truth to sim-
plify the statistical data to the point of understand-
ing. The limitations of epidemiology should be rec-
ognized. As a great physician-epidemiologist once
said: “Epidemiology is a butcher shop; don’t try to
use a scalpel.” In other words, epidemiology can
only study strong risk associations, because even
strong associations are made to appear weak by un-
avoidable measurement errors and biases. Truly
weak associations will probably be missed by all but
the largest and luckiest studies. With this in mind,
the routine use of pathologic qualifiers such as “con-
sistent with” and “cannot exclude” should be aban-
doned for epidemiologic studies, with the recogni-
tion that diagnostic errors will exist (the extent of
which should be measured by reliability studies and
reported).

The Need for Masking

Epidemiologists tend to mask all data collection as
an automatic part of good research technique to
avoid the influence of possible subtle biases that
could distort risk estimates. Thus, they do not rou-
tinely tell interviewers the disease status of the sub-
jects to minimize bias in questioning, they do not
tell laboratory collaborators the identity of speci-
mens until the results are obtained, and they ask
pathologists to make their diagnoses with a mini-
mum of information regarding the patients. Pathol-
ogists working together (panel reviews) tend to
agree more readily than if the independent opinions
are compared. The social tendency to promote con-
sensus may be the cause. Epidemiologists are seek-
ing a completely independent decision from pathol-
ogists, without influence from previous diagnoses or
clinical tests, which often are being studied as risk
factors for the current condition. All common sta-
tistical tests assume that the study measurements
are completely independent of each other; thus, us-
ing any piece of data to influence a decision on an-
other piece of data is wrong.

Pathologists, however, realize that diagnoses are
best made in the context of complete information
regarding the patient, and that asking for a micro-
scopic diagnosis out of context, as one would de-
mand a lab result from a machine, risks error. Some
pathologists incorrectly view the request for mask-
ing as a sign of distrust of their intellectual integrity
or ability to make an independent decision. The re-
quest is actually a sign of epidemiologists’ belief that
everyone is biased about every decision unless
masked. As a revealing example, an epidemiologists’
wine tasting group in Maryland covers all labels

from the bottles before tasting and unmasks the re-
sults only after the “data” (opinions) are in. Fortu-
nately, it is usually easy for good collaborators to
achieve a balance between automatic demands for
complete masking and the kind of complete disclo-
sure of study information that could lead to serious
biases.

Standardization of the
Scientific Art of Pathology

A more thorny problem arises when epidemiologists
challenge the accuracy and reliability of pathologic
diagnoses, either as part of a formal pathology
agreement study or as part of a larger epidemiologic
project. This challenge takes the form of calculation
and publication of rates of (dis)agreement between
experts or between the expert and himself/herself on
different days. The epidemiologist is trained to be-
lieve that all biological pkenomena are variable and
that all measurements of biologic phenomena are
prone to random error. The pathologist has the
weighty daily task of being the final arbiter of dis-
ease definition, a responsibility that does not mesh
well with error.

The epidemiologist author has learned something
about the world of gynecologic pathology only be-
cause of the intellectual humility of expert gyneco-
logic pathologists (responsible for several of the chap-
ters in this text) whose curiosity outweighed their
urges to preserve their national reputations for infal-
libility. Most of the comparisons performed have
related to the cytopathology and histopathology of
cervical intraepithelial neoplasia and benign “look-
alikes.” Agreement rates between expert pathologists
have been only fair at best but have led to a greatly
increased understanding of the diagnoses.

A pathologist may feel irritated at the demands
for reliability studies from new epidemiologist col-
leagues. If so, it might help to ask the eager-beaver
epidemiologist when they had last compared their
design or analytic performance in a masked com-
parison with other epidemiologists. Because such
painful comparative exercises are almost never per-
petrated by epidemiologists on themselves, mutual
humility and curiosity should reign.

Specimen Adequacy Versus the
Bias of Convenience Samples

Epidemiologists seeking to minimize bias are loath
to permit exclusions from a complete series. They
suspect that the excluded members of the set will
differ from those included in a systematic (biased),
rather than random, way. Thus, epidemiologists
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working with pathologists wish to start their analy-
ses by considering the entire collection of pathologic
specimens available, winnowing out as needed to
usable specimens but always with an eye to possi-
ble biases of exclusion that could affect the general
applicability of the results. Epidemiologists distrust
convenience samples, groups of specimens that hap-
pen to be available for testing or for review. Pathol-
ogists may view the task of defining and retrieving
all relevant specimens from their center to be un-
necessary. It may be difficult to decide in advance
when a convenience sample is sufficient and when
a more definitive collection is required. In general,
convenience samples are useful for preliminary
methodologic work, such as checking if genomic
DNA can be amplified from the paraffin blocks avail-
able, but such studies cannot be used to reach de-
finitive, generalizable conclusions.

Deciding How Large a Study to Do:
Statistical Significance Versus Practicality

Bigger is better for the epidemiologist. It is not
much more difficult to do a statistical analysis of
1000 patients than 100; in fact, it is methodologi-
cally easier because the numbers are clearly suffi-
cient. However, the pathologist collaborator may
view it differently. The question of study size is al-
most always negotiable, in that bigger studies per-
mit the detection of smaller differences, but the crit-
ical difference that needs to be detected is usually
open to discussion.

There are minimum numbers of subjects that
permit epidemiologic analyses. It is impossible to
generate a statistically significant result with fewer
than 5 subjects, regardless of how strong an associ-
ation is. Thirty subjects is another breakpoint.
Thirty subjects is a common minimum number in

that common statistics such as means start to “be--

have” more reliably when there are about 30 or more
data points. About 200 cases and 200 controls are
needed to find reliably a relative risk of about 2.0 (a
doubling of risk), given typical prevalences of com-
mon exposures. Case-control studies of more than
1000 subjects are relatively rare. Cohort studies,
however, often require thousands or even tens of
thousands of subjects to generate enough disease
endpoints for analysis. Clinical trials range from
small (20 subjects) to large (thousands of subjects)
based on the size of the difference being sought. In
general, small studies miss weak associations, do
not permit adequate adjustment for confounding,
and generate less reliable estimates of risk. Still,
many landmark studies of new topics have been
small.

The key to defining the proper size of the study
is to agree on the hypothesis and the range of ex-
pected results. Sample size calculations are very as-
sumption dependent and usually demand informa-
tion not available until the study is completed. Most
epidemiologists choose a reasonable number based
on cost and time available, then compute the sta-
tistical power of such a study to detect associations
of various strengths. It is standard to require the
study to have an 80% or greater chance of finding
(as statistically significant) the key disease—exposure
association under study, assuming the association
truly exists. Epidemiologists therefore commonly
accept a 20% chance of making a type 2 error (fail-
ing to “observe” a true association) whereas they re-
strict themselves to approximately a 5% chance of
making of a type 1 error (falsely declaring a null as-
sociation to be significant). As scientific skeptics,
epidemiologists stack the deck against themselves to
avoid being rash. When they are making multiple
comparisons, they often reduce the required level of
significance below 1% to even tougher standards of
evidence.

For the pathologist, boredom and time commit-
ment can be real problems in big epidemiologic
collaborations. Pathology quality assurance group
members can easily spend 10 hours a week on re-
view work of fairly monotonous, unchallenging
cases. Of course, the friendly epidemiologic collab-
orator will be monitoring to avoid any drift in di-
agnostic interpretations over time. There will be
cases sent back with relabeling to assess intra-
pathologist reproducibility. The situation requires
dedication, trust, and scientific interest. In truth, to
answer big questions often takes big studies by a co-
operative team.

Incorporating Research into
Pathology Practice

The value of well-characterized pathology collec-
tions is increasing. The field of molecular diagnos-
tics is being powered at the speed of molecular bi-
ology. The clinical relevance of new findings and
potential assays, however, can only be evaluated at
the restraining speed of clinical studies and epi-
demiology. A few new themes are emerging.

In this volume, there are discussions of ge-
nomics, RNA microarrays, and proteomics. How-
ever, venerable old histology collections are usually
not useful for archival studies of DNA and especially
RNA because of the destructive nature of acidic fix-
atives. Even neutral buffered formalin is not nucleic
acid “friendly.” Pathologists who wish to conduct a
lot of molecular work come under pressure to per-
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form frozen sections or to use ethanol or other fix-
atives favoring the molecular analysis as well as the

morphology. As a very pragmatic point, will pathol- -

ogists keep tissues past the regulatory requirements
to promote science, at the expense and risk that ac-
company archived materials?

. As another issue of practicality and trust, insti-
tutions need to work together more than ever before
to further new leads into the origins of relatively rare
tumors and new subdivisions of neoplasia. Issues
of relabeling, confidentiality, and ambiguities of in-
formed consent can stop conceptually appealing
multiinstitutional collaborations.

For those readers who have actually displayed
exceptional interest by completing this chapter, a
good question might be “Where do we interdisci-
plinary types go from here?” Journals of common
general interest to pathologists and epidemiologists
are rare. Funding committees often are not com-
posed to evaluate our jointly conceived projects. In-
terdisciplinary meetings for pathologists and epi-
demiologists are difficult to imagine and virtually
nonexistent. For now, we meet in response to spe-
cific research questions, in ad hoc meetings and col-
laborations.

For the future, however, consider this. I am in a
research group that previously contained only epi-
demiologists and clinicians. Then we added molec-
ular biologists. Starting this year, we will have our
first full-fledged pathologist epidemiologist. Laser
capture microdissection and microarrays are be-
ginning to replace questionnaires and abstracts as
the “meat and potatoes” of cancer epidemiology.
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